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ABSTRACT 

This document provides a description of an error control scheme which can enhance the reliability 
of file and message transfer in the Battlefield Awareness and Data Dissemination (BADD) and 
Global Broadcast Service (GBS) programs. 

The proposed scheme is intended to be general enough for adaptation to real network consid- 
erations, traffic profile, channel behavior, and computational and memory limitations. As such, 
the proposed scheme will need to be modified slightly for actual use, and some of the necessary 
modifications will be addressed. 

in 



TABLE OF CONTENTS 

1 OVERVIEW 1 

1.1 Channel and Network Description      1 

1.2 Current Error Control Scheme      2 

1.3 Design Goals for Proposed Scheme  3 

2 DESCRIPTION OF THE CODING SCHEME 5 

2.1 General Code Description  5 

2.2 Encoding Procedure for the 3-D Product Code  8 

2.3 Decoding Procedure for the 3-D Product Code  8 

2.3.1    Single RS Codeword Correction Technique  9 

3 DETERMINISTIC ERASURE AND ERROR PERFORMANCE 13 

3.1 Sub-Optimal Decoding Loss  13 

3.2 Performance Guarantees  16 

3.3 Benchmark Tests  18 

4 IMPLEMENTATION ISSUES 19 

4.1 A Few Words on Interleaving  19 

4.2 Multiplication and Division in a Galois Field  20 

4.3 Choosing the Dimension Sizes  20 

4.4 File Size versus Code Format  22 

4.5 Availability of Data      22 

5 SUMMARY 25 



LIST OF ILLUSTRATIONS 

Figure 
No. Page 

1 Three-dimensional product code structure 5 

2 Parallel codeword structure 6 

3 Product code packet ordering 8 

4 3x3x3 fragmented cube of erasures 14 

5 Undecodable erasure pattern using the sub-optimal decoding method 15 

LIST OF TABLES 

Table 
No. Page 

1 Single Burst Plus Random Erasure Protection Guarantees 16 

2 Double Burst Plus Random Erasure Protection Guarantees 17 

3 Single Burst Plus Random Erasure Guarantees, Given a Single 
Random Error 17 

4 Double Burst Plus Random Erasure Guarantees, Given a Single 
Random Error 18 

Vll 



1.   OVERVIEW 

This document provides a description of an error control scheme which can enhance the reliability 
of file and message transfer in the Battlefield Awareness and Data Dissemination (BADD) and 
Global Broadcast Service (GBS) programs. 

The proposed scheme is intended to be general enough for adaptation to real network consid- 
erations, traffic profile, channel behavior, and computational and memory limitations. As such, 
the proposed scheme will need to be modified slightly for actual use, and some of the necessary 
modifications will be addressed. 

1.1    Channel and Network Description 

BADD (Battlefield Awareness and Data Dissemination) is a DARPA ACTD (Advanced Concept 
Technology Demonstration) program which is developing information management techniques for 
the selection, integration, and addressing of data needed by the warfighter. BADD will make use 
of the GBS (Global Broadcast Service) satellite system which will be able to convey high data rate 
streams (approximately 24 Mbps) to small terminals. Low rate reverse links using the "Tactical 
Internet" will permit some users to request or "pull" selected information and provide a means for 
two-way protocol closure, e.g., ARQ for reliable message reception. However, it can not be assumed 
that all users will have access to a return link. Hence strong and efficient forward error control is 
essential. This Report will present a particular forward error control scheme designed for message 
recovery by end users. 

At the physical layer, GBS will employ highly efficient modulation and coding techniques yield- 
ing a very low bit error rate (on the order of 10~10) at low signal-to-noise ratio per bit. However, 
even at these low error rates there are still several potential situations that can interfere with reliable 
message transmission. Some examples of these situations are as follows: First, long messages (e.g., 
images consisting of several gigabytes) take minutes to transmit and would have a non-negligible 
probability of containing at least one random error. Second, the line-of-sight from the GBS satel- 
lite to a user can be disturbed by discrete events such as a soldier walking in front of the antenna. 
Finally, even with an undisturbed RF channel, a steady stream of high rate data being delivered to 
a busy end-user computer through numerous hardware and software layers can result in dropped 
cells or packets. 

In order to mitigate these problems, a powerful forward error correcting and erasure filling 
scheme was designed for use with BADD and GBS. The goal was to recover dropped data packets 
and correct occasional packet errors while using minimal computation and coding overhead. Since 
a single user may not receive a steady stream of data, the scheme was designed to be implemented 
on a per-message basis. For practical reasons, the scheme was designed to be implemented at 
the application level in software, without the need for additional hardware. Because of this, the 
minimization of computational complexity was a primary design constraint. 



Since this scheme is implemented on a per-message basis, and since the general error event may 
result in the loss of a large amount of data (possibly on the order of a few megabytes), the scheme is 
designed for the protection of large files. With the type of error events considered, no per-message 
scheme can protect small messages in the absence of a reverse link when low latency and low coding 
overhead is desired. 

The scheme is based on multidimensional Reed-Solomon product codes with a sub-optimal 
but computationally feasible decoding procedure. The encoding and decoding procedure will be 
described in detail. A summary analysis of its capabilities and a discussion of the sub-optimality 
of the decoding procedure will be presented. A prototype encoding and decoding procedure was 
implemented in C, and the results of prototype benchmark testing will be presented. 

1.2    Current Error Control Scheme 

The current error control scheme used with BADD and GBS is simple but inefficient. The scheme 
uses a repetition code, where the number of times a message is repeated is variable. A message 
is broken into suitably sized packets, and the entire message is repeated. For decoding, the first 
packet which passes its checksum is accepted and all others are discarded. 

This error control scheme has several advantages. First, it is simple to analyze and implement. 
Second, it requires minimal computation. It uses only a checksum in addition to the standard 
network checksums of UDP, IP, and the convergence sub-layer of ATM. Third, it requires virtually 
no additional memory since only original data is stored, along with a record of which packets 
have been received. Fourth, the probability of failing to receive a message can be made arbitrarily 
small using a sufficient number of repetitions. Finally, the application can ignore future message 
repetitions once it has accepted a complete set of packets. Thus, if the channel is good for a long 
time, such that the entire message is successfully transmitted the first time, there is virtually no 
delay before the message is successfully received and decoded. 

This error control scheme has several disadvantages, however. First, and most importantly, it 
is inefficient. The error control imposes 100% overhead for each repetition (this is in addition to 
standard per-packet network overhead). Second, the scheme uses sub-optimal decoding in accepting 
the first packet which passes its checksum. Thus, although unlikely, error-filled packets may pass the 
checksum and not be rechecked. From a data-integrity point of view, a simple improvement would 
be to use a majority-rule system to virtually eliminate the chance of accepting a packet with errors 
(which is only an issue if it is the first packet to pass its checksum). This "improvement," however, 
comes with a severe delay penalty. Third, a single dropped packet causes a packet decoding latency 
at least equal to the transmission time of the entire message. This can be unacceptable, particularly 
when dealing with long messages (consider dropping one of the last packets of a message). Fourth, 
channel outages (erasure bursts) may drop all copies of short messages unless artificial delay or 
padding is introduced. 



1.3    Design Goals for Proposed Scheme 

The error control scheme is designed to meet the following goals: 

1. Small coding overhead — 10 to 15% (plus network overhead). 

2. Minimal decoding computation. 

3. Reasonable memory requirement. 

4. Recover from long channel outages as well as scattered packet losses and occasional errors. 

5. Low latency when the channel is behaving well. 

6. Decode simultaneously with data arrival to reduce decoding delay. 

This scheme is designed to recover missing data due to lost packets, as opposed to recovering data 
from noisy signals on a typical physical channel. Packets with byte errors are rarely delivered to 
an application, since multiple network checksums (from UDP, IP, and the convergence sub-layer 
of ATM in the envisioned network) are used. The two major advantages of dealing with packet 
erasures rather than actual errors is that the locations of data erasures are precisely known and, 
in the absence of errors, the decoding procedure can determine apriori what corrective steps will 
recover the lost data, if at all possible. 





2.   DESCRIPTION OF THE CODING SCHEME 

2.1    General Code Description 

In general, a UDP packet will either be received correctly or be entirely erased due to checksum 
failure somewhere within the network protocol stack (ATM, IP, or UDP). The network does not 
notify the decoder (application) when a packet fails its checksum. 

The scheme we propose therefore imposes no correlation (beyond the network checksums) 
amongst the bytes of the individual UDP packets. We use a set of identical codes involving a 
series of UDP packets. We use a codeword for each data byte position in the UDP packets. This 
set of "parallel" codewords is intended to fill in the packet erasures due to checksum failure and 
additionally to recover from occasional (very rare) packet errors. 

The dimensions and packets are arranged qualitatively as pictured in Figure 1. Each cell 
corresponds to a single code symbol, and each code symbol is one byte. The bytes of a UDP packet 
are enumerated vertically from top to bottom, along Dimension 0. Code 1 spans Dimension 1, and 
similarly Codes 2 and 3 span Dimensions 2 and 3, respectively. Each packet can be identified with 
a triplet (D1,D2,D3) corresponding to its logical position in the figure. 

CODE 2 

^C7DATA 
PACKET 

CHECK 

BYTE 

Figure 1. Three-dimensional product code structure. 

To see how the parallel set of codewords are arranged, refer to Figure 2. The bytes of UDP 
packets are enumerated along Dimension 0 (dO). Each codeword in the set fills in the erasures in a 
single byte position along Dimension 0. Ignoring packet errors for the moment, a specific pattern 



of packet erasures will result either in successful erasure recovery by every codeword in the parallel 
set or failure by every codeword in the parallel set. 

Dimension 2 
... Dimension 3 

Codeword 

Codeword 

Codeword 

Figure 2. Parallel codeword structure. 

The specific code we propose for erasure recovery (each Codeword in Figure 2) is a 3-dimensional 
product code, using shortened Reed-Solomon codes as the constituent codes. Using a straight- 
forward, sub-optimal decoding procedure for the product codes to minimize computation, the 
3-dimensional product code yields good burst erasure and random erasure recovery as well as 
reasonable random error and erasure recovery. The decoder performance will be addressed in 
Section 3. 

Recall that an (n, k) block code maps k information symbols into n codeword symbols. A 
Reed-Solomon code (RS code) is a block code with minimum distance dmin = n - k + 1. Such 
codes are called maximum-distance codes; no block code with the given (n, k) can have a larger 
minimum distance. An optimal decoder (minimum distance decoder) for any block code with 
minimum distance dm;n can guarantee correction of any pattern of v erasures and t errors provided 
v + 2 * t < dmjn, and can additionally correct some patterns of errors and erasures that violate 
this inequality. Using reasonable assumptions about the physical network, a minimum distance 
decoder is a maximum-likelihood decoder. Alternately, a decoder that decodes up to the minimum 
distance of the code will guarantee correction of any pattern of errors and erasures that satisfies 
this inequality, but it is free to decode arbitrarily (or give up) if the inequality is not satisfied. 

The constituent shortened RS codes we use are subspaces of RS codes corresponding to setting a 
number of the A; information symbols, say the first I of them, equal to zero. We use I fewer symbols 
per codeword. The shortened RS code is then an (n - I, k -1) maximum-distance block code. The 



minimum distance of a shortened RS code is the same as that of the parent RS code. Note that 
using a shortened RS code decreases the information rate of the block code since ^4 < -, and n—l n' 
thus increases the coding overhead relative to the full-length code. 

A decoder guaranteeing correct decoding up to the minimum distance of a shortened RS code 
(addressing both errors and erasures) can be implemented entirely with lookup tables and some 
basic arithmetic operations, thereby minimizing computation. However, the size of the lookup 
tables is practical only for extremely weak RS codes — where the minimum distance is small. We 
address this in Section 2.3.1. 

For efficient implementation, reasonable arithmetic and syndrome table sizes, and high code 
rate, we use RS codes defined over the 256-member Galois Field, denoted GF(28) or GF(256). 
The most important factor in deciding the field size is efficient implementation since the error 
control scheme must be implemented at the application level — without dedicated hardware for 
efficient implementation of symbols with size unequal to 8 bits (or 16). All our shortened RS codes 
are based on a single, full-length (255,253) RS code, so the codeword and information symbols 
are 8 bits each. The minimum distance of this and its shortened codes is 3. We encode data 
bytes systematically (losing no performance), and thus a shortened RS codeword of length LEN 
consists of (LEN-2) information symbols, {ifcj-^f,^-3, and tw0 parity-check symbols pc01. The 
qualitative location of the information symbols and the parity check symbols is diagrammed in 
Figure 1, where only a few information symbols and a single parity check symbol (shaded) per 
dimension is pictured for compactness. The computationally simple (shortened) RS decoder used 
can guarantee correct decoding of any single error or up to two erasures, which is the most that an 
optimal minimum-distance decoder can guarantee. 

We build a product code out of weak constituent RS codes to provide a more powerful overall 
(block) code with a decoder still relying largely on lookup tables. We use a 3-dimensional product 
code with constituent codewords oriented along Dimensions 1, 2, and 3, as qualitatively diagrammed 
in Figure 1. The defining quality of a product code is that the symbols oriented along a specific 
dimension (1, 2, or 3) form a codeword in that dimension's block code — these dimensional block 
codes are called the constituent codes of the product code. We allow the lengths of the shortened 
RS codes to vary according to message length or application requirements (limitted memory, delay, 
etc.) — all the codewords (rows) oriented along Dl must be the same length, but this length may 
be different than those oriented along D2 or D3. 

The minimum distance of an n-dimensional product code is the product of the minimum dis- 
tances of its constituent codes [1]. The 3-d product code we use has dmjn = 33 = 27. We use 
a sub-optimal decoding algorithm (not a minimum-distance decoder for the product code) which, 
in the absence of errors, still decodes the 3-d product code up to its minimum distance. The 
sub-optimal decoder is discussed in Section 2.3. 



2.2    Encoding Procedure for the 3-D Product Code 

For concreteness, assume that the lengths of the constituent RS codes along Dimensions 1, 2, and 3 
equal LEN1, LEN2, and LEN3, respectively. We use shortened RS codes based on a systematically- 
encoded (255,253) code, so every constituent codeword contains 2 parity-check symbols. The pack- 
ets representing the last two positions along Dimension 3 (D3), for example, consist entirely of 
parity-check symbols for the parallel 3-d product codewords. In fact, every packet with sequence 
number (i.e., position along the appropriate dimension) Dlsn > (LEN1 - 3), D2sn > (LEN2 - 3), 
or D3sn > (LEN3 — 3) consists entirely of parity-check symbols for codewords oriented along Dl, 
D2, or D3, respectively (enumeration in all dimensions begins with 0). 

Refer now to Figure 3, where dO is oriented directly into the page (a bird's-eye view of Figure 1). 
In the figure, the code dimensions are LEN1 = 5, LEN2 = 6, and LEN3 = 5. The packets consisting 
of parity-check symbols are shaded in the figure. The origin is located at the lower left corner. 
The packets are numbered according to the order in which they are sent across the channel (no 
interleaving is used within the encoded message). 
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Figure 3. Product code packet ordering. 

Encoding can be accomplished by logically arranging the original data accordingly and system- 
atically encoding the constituent codes in each dimension. 

2.3    Decoding Procedure for the 3-D Product Code 

The sub-optimal, non-adaptive decoding procedure we suggest is straight-forward. First decode the 
shortened RS codewords oriented along Dimension 1. Then decode those oriented along Dimension 
2. Finally, decode those oriented along Dimension 3. We do this in parallel along Dimension 0, the 
bytes of the UDP packets. 



In the absence of errors, this sub-optimal decoding procedure decodes up to the minimum 
distance of the product code. We characterize the sub-optimality below. We do not envision this 
full sub-optimal decoding procedure to be run on every 4-d data set, since it is unnecessary (and 
computationally wasteful) when the channel is behaving well. The most interesting and useful 
quality of this error control scheme is its adaptability to channel conditions (packet erasures). The 
advantage of primarily filling erasures rather than correcting errors lies in knowing a priori exactly 
what decoding steps must be taken to fully recover the data. A simple but effective approach could 
be to decode a subset of the 3 dimensions. Depending upon the erasure pattern, it is likely that at 
most two or possibly one of the three constituent codes need be decoded - this would reduce the 
core decoding computation by | or | if such an adaptive scheme were used. The computational 
savings over the full decoding procedure will be determined precisely by how aggressive an adaptive 
approach is used and by how conservative an approach is desired when considering the presence of 
additional, though rare, packet errors. 

2.3.1    Single RS Codeword Correction Technique 

Consider the full decoding procedure described above. An efficient computational algorithm for 
implementing the procedure, such as the one we chose to implement for preliminary benchmark 
testing, may opt to compute all the appropriate syndromes for every shortened RS codeword in 
every dimension as the data arrives, filling in all erasures with zeros. This allows a single pass 
over the 4-d data set rather than requiring a pass over the 4-d data set for every dimension in 
the product code. If a one-pass algorithm is used (as we suggest), corrections (both erasures and 
errors) to constituent codewords contribute to the syndromes for constituent codewords that will 
be decoded later in the procedure. Thus an efficient method (time and memory) for updating 
syndromes corresponding to constituent codewords that will be decoded later is crucial. 

Single RS codeword syndromes are computed by multiplying the received word by the parity- 
check matrix, filling in all erasures with zeros for the computation. The adjustment of syndromes 
in all remaining undecoded dimensions is easy — when we fill in an erasure, we need only multiply 
the erasure value by the proper row of the parity check matrix and add the result to the cumulative 
syndrome computations. Error corrections are handled similarly by multiplying the error value 
(correct symbol minus the error symbol) by the proper row of the parity check matrix and adding. 
The core syndrome computation using this method requires 2 multiplications and 2 additions per 
data byte per dimension. 

We generate a syndrome lookup table with a number of entries equal to (28) holding (28 — l) 
valid entries (the remaining entries are 0). The table is generated by multiplying every possible 
single error word against the parity-check matrix to yield the syndromes — there are 255 possible 
non-zero error values in 255 possible positions. The two syndrome symbols become the keys of the 
table, while the entry stores the error value and location. Since the minimum distance of the RS 
code is greater than 2, we are guaranteed to generate a unique pair of symbols (the syndrome) for 
every single-error word. 



Error and erasure correction is implemented differently depending on the number of erasures in 
the codeword. When we have 0 or 1 erasure, we use the syndrome lookup table mentioned above. 

Consider a codeword without erasures. We are guaranteed by the minimum distance of the RS 
code (equal to 3) to be able to correct any single error in the codeword. If there is a single error, the 
syndrome symbols will not both be zero. As mentioned above, the syndrome table then necessarily 
stores the correct error value. Now if the codeword has multiple errors, we have no bahavioral 
guarantee — either the syndrome will correspond to an invalid entry, or it will correspond to a 
codeword with distance at least 3 from the original. 

As an aside and for completeness, note that the shortened codes have a small advantage over 
the full-length codes in the presence of multiple errors. For the shortened codes, erroneously deter- 
mining that the syndrome corresponds to a "detected" single error may result in a "detected error 
location" outside the bounds of the shortened codeword. For example, consider a received vector 
(shortened codeword plus noise) of length LEN j 255 symbols with two errors and no erasures. 
Considering how the syndrome table is generated, the computed syndrome may correspond to a 
single error location in a full-length RS codeword. Then with probability 255^EN, the "detected 
error location" is not a valid location within the shortened codeword. This is a very small advan- 
tage considering the incredibly unlikely event of receiving multiple symbol errors in a constituent 
codeword. 

Now consider a codeword with a single erasure. Without additional errors, we are guaranteed 
to find the syndrome in the table because this erasure corresponds to a single error whose value is 
the proper (erased) codeword symbol. With a single additional error (i.e., 1 error and 1 erasure), 
we are guaranteed not to find the syndromes in the table and thus we will necessarily, knowingly 
fail to decode the codeword. This is guaranteed by the minimum distance of the code. If we found 
a syndrome table entry whose error location corresponded to the erased location, then filling in 
the erased location with the error value would result in a valid shortened codeword with distance 
2 from the correct codeword. Thus, with one erasure and one error, the table entry corresponding 
to the syndrome will either contain an error location unequal to the known erasure location or will 
be an invalid entry (zero). 

Finally consider a codeword with two erasures. Assume the two erasure locations are j, k, assume 
j < k, and assume there are no additional errors. Assume that the codeword c = [coci ■■•cn] is 
sent and that the received vector is r, where the (possibly shortened) code has n symbols. Denote 
the n x 2 parity-check matrix by H*, and denote the ith row of H* by hs = [hi>0 hiti\. We can 
rewrite c as 

C     =     [coCi • ■ • Cn] 

-     [c0Ci ■ ■ • Cj-iOCj+i ■ • • Ck-lOCk+1 •■■Cn] 

+ [00 ■ ■ • OcjO • ■ • 0] 

+ [00 • • ■ 0cfe0 • ■ • 0] 

=   c' + Cj + ck. 

10 



Now filling in the erased locations with zeros, we can similarly rewrite the received vector (without 
errors) as 

r   =   c' 

=     C + Cj + C£ 

=     C + Cj+Ck, 

where cj = [00 • • • 0 — CjO ■ ■ • 0] = Cj since every element is its own additive inverse (in any GF of 
characteristic 2). Denoting the syndrome v = [VQ V{\, we can write 

v   =   rH* 

=   CjH* + ckH* (1) 

=   [cjCfc]Hsub, (2) 

where (1) follows since cH* = 0 for any codeword. 

Now we prove by contraposition that we can find Cj,Ck- If HSUb is not invertible, it has a 
non-trivial null-space [1, Ch2]. Then with the syndrome v fixed, there are multiple pairs [a; y] 
satisfying (2) for [CJ cjb]. Then we cannot uniquely decode this codeword. But, by assumption, 
this codeword has 2 erasures, no errors, and the code has minimum distance 3 -¥<-. Thus Hsub 
is invertible. Furthermore, H~u

x
b is unique [1]. We can thus always invert HSUb to solve uniquely 

for Cj,Ck- This extends to higher dimensions for more powerful RS codes, though inverting higher- 
dimensional matrices requires significantly more computation (e.g., solving for 2 erasures requires 
10 multiplications, 2 additions; solving for 3 erasures requires 39 multiplications, 17 additions using 
the Laplace expansion and cofactors for inverting the matrix — this may still be acceptable). 

Finally, consider a codeword with 2 erasures and one or more additional errors. Using the 
method of multiplying v by H~^b, we will never know whether there are additional errors. We will, 
in general, replace the erased symbols with incorrect symbols. 

11 





3. DETERMINISTIC ERASURE AND ERROR PERFORMANCE 

We have characterized the deterministic performance of the scheme in a number of ways. Since 
we have no reasonable stochastic channel model, we have not attempted any stochastic analysis. 
We could use a coarse Gilbert-Elliot type channel model in a stochastic analysis, but this would 
be an arbitrary choice. This coarse model would represent a 3-dimensional space (a possible basis 
would be the two average state dwell times and the average time in one of the two states), and an 
analytical mapping could be approximated only in limited regions of the space. We feel that such 
analysis should be attempted after an approximate model is developed for the actual channel. 

3.1    Sub-Optimal Decoding Loss 

Considering only erasures, we can explicitly characterize erasure patterns that will be undecod- 
able under the specific sub-optimal decoding scheme we have chosen and under the full-power 
decodability of the product code. 

Exploiting the full power of the code, i.e., using an optimal (minimum-distance) decoder, any 
undecodable erasure pattern must contain a 3 x 3 x 3 fragmented cube of erasures within the 3 - d 
product code. A fragmented cube of erasures can be defined mathematically as follows. For nota- 
tional purposes, each logical position in the data set can be identified by a triplet (Dlsn,D2sn,D3sn) 
identifying the position along dimensions Dl, D2, and D3, respectively. A fragmented cube of era- 
sures consists of exactly 27 erasures whose corresponding set of 27 triplets {(Dlsn,D2sn,D3sn)} 
satisfies the following criterion: 

• there are exactly 3 unique sequence numbers in the first coordinate, Dlsni, Dlsn2, and Dlsn3, 
each appearing exactly 9 times, AND 

• there are exactly 3 unique sequence numbers in the second coordinate, D2sni, D2sn2, and 
D2sn3, each appearing exactly 9 times, AND 

• there are exactly 3 unique sequence numbers in the third coordinate, D3sni, D3sn2, and 
D3sn3, each appearing exactly 9 times. 

This 3x3x3 fragmented cube of erasures corresponds to a set of 9 erasures in a Dl x D2 plane 
repeated in 3 different positions along D3 (not necessarily successive positions). The pattern of 9 
erasures must consist of exactly 3 rows and 3 columns (not necessarily successive rows or columns) 
each with 3 erasures to form a 3 x 3 array. Refer to Figure 4 for such a 3 x 3 x 3 fragmented cube 
of erasures. This is a bird's-eye view of the 4-d data set with Dimension 0 directed into the page. 
Each large X represents an erasure. 

As explained in Section 2.3.1, any single codeword containing fewer than 3 erasures will be 
correctly filled. Thus, after simply iterating the decoding procedure multiple times (running through 
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Figure 4. 3 x 3 x 3 fragmented cube of erasures. 

the full decoding procedure multiple times on the same data set), only constituent codewords with 
more than 3 erasures could be left unfilled. Since this is true for every dimension of the code, every 
undecodable erasure pattern using the iterated technique must contain a 3 x 3 x 3 cube of erasures. 
Furthermore, in the absence of errors, the iterated procedure monotonically decreases the distance 
between the received word and the correct codeword (it does not introduce erroneous symbols in 
the absence of received symbol errors), and thus any erasure pattern correctable by the iterated 
procedure will be correctable by a minimum-distance decoder. Conversely, any 3x3x3 cube of 
erasures is undecodable (equidistant from 2 codewords), and thus every erasure pattern containing 
such a cube is undecodable for any decoder. 

Now consider the sub-optimal decoding procedure described in Section 2.3. Describing the 
undecodable erasure patterns is difficult, but the patterns are fully characterizable. We will argue 
that any undecodable erasure pattern must contain three sub-patterns of 9 erasures in a Dl x D2 
plane, each sub-pattern with a different index in D3. Each sub-pattern of 9 erasures must contain 3 
different columns with 3 erasures each, each column with an erasure in at least 1 common D2 row. 
Call such a row a cross-pattern row. Then, finally, each of the three sub-patterns with 9 erasures 
must have at least 1 commonly erased (D1,D2) pair within their cross-pattern rows (to yield a D3 
codeword with 3 erasures). 

Refer to Figure 5 for such an undecodable pattern when using the simple sub-optimal decoding 
procedure. This is a series of bird's-eye views of the 4-d data set with DO directed into the page. 
Each large X represents an erasure. All cross-pattern rows are highlighted. The top sketch depicts 
an original, hypothetical erasure pattern on the 4-d data set. The middle sketch depicts the three 
sub-patterns of 9 erasures. The bottom sketch shows the undecodable D3 codeword with 3 erasures 
that must be left after the first 2 dimensions have been decoded. This is an undecodable erasure 
pattern. 

Returning to the characterization of erasure patterns, consider any erasure pattern that satisfies 
these conditions. Focusing on the Dl x D2 plane, only an erasure pattern containing such a 9-erasure 
sub-pattern can be left unfilled after decoding the first two dimensions of the product code. Indeed, 
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Figure 5.  Undecodable erasure pattern using the sub-optimal decoding method. 

the cross-pattern rows will be left unfilled after decoding the first two dimensions. Focus back on 
the full 4-d erasure pattern and work backwards in the decoding procedure. Only patterns with 3 
or more remaining erasures along a D3 codeword will be left unfilled after decoding D3. Any triplet 
of erasure sub-patterns with a commonly erased (D1,D2) pair in their cross-pattern rows will leave 
a D3 codeword at this location with at least 3 remaining erasures, and thus every erasure pattern 
containing such a triplet of sub-patterns is undecodable. By a similar argument, any undecodable 
erasure pattern must contain such an erasure sub-pattern. 

Note that this class of erasure patterns contains the 3x3x3 fragmented cubes (i.e., the erasure 
patterns that are undecodable for a minimum-distance decoder), of course, as all 3 rows of each sub- 
pattern are cross-pattern rows and the 3 sub-patterns overlap in all 9 (Dlsn,D2sn) pairs (leaving 9 
undecodable D3 codewords). „ 

Such characterization of undecodable erasure patterns for both an optimal and this particular 
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sub-optimal decoding procedure will ease stochastic analysis. Further, this characterization will 
make stochastic performance simulation (if desired) simple for an optimal decoding procedure. 
Finally, it may help simplify simulation of the sub-optimal decoding procedure, though this could 
just as easily be obtained by generating erasure patterns and simply correcting (in the appropriate 
order) all codewords with fewer than 3 erasures. 

3.2    Performance Guarantees 

We summarize several deterministic performance characterizations. For notation, we have defined 
the code dimensions ni = LENl,ri2 = LEN2. In the following tables, a single burst of erasures 
refers to a single burst across the entire 4-d data set. Similarly, a double burst corresponds to 2 
separate bursts (possibly contiguous) across the entire 4-d data set. Furthermore, a random erasure 
per cube corresponds to a single random erasure for every Dl x D2 plane. 

We took a game-theoretic point-of-view to generate the following performance guarantees. 
Specifically, we found the absolute worst orientation of burst erasures, random erasures, and ran- 
dom errors such that we can still guarantee perfect data recovery using the sub-optimal decoding 
procedure. Allowing the "Maximum Erasure Burst Size" to increase by one will admit an era- 
sure/error pattern that will break the decoding procedure (i.e., the decoding procedure will fail to 
produce an error- and erasure-free 4-d data set). The code will perform significantly better under 
reasonable stochastic variation. 

For specific numerical values, we assumed no = 400 (i.e., 400 bytes per packet), n\ 
and nz = 25. 

TABLE 1 

Single Burst Plus Random Erasure Protection Guarantees 

ri2 = 69, 

Max. # Random 
Erasures Per Cube 
(Dropped Packets) 

Max. Erasure 
Burst Size 
(Packets) 

0 ni (2n2) = 9522 
(3.0 second outage 
at 10 Mbits/sec) 

1 nx (2n2 - 1) + 3 = 9456 
2 m (2n2 - 1) + 1 = 9454 
3 "i (n2 + 3) = 4968 
4 ni (n2 + 2) + 3 = 4902 
5 ni (n2 + 2) + 1 = 4900 
6 m (n2 + 1) = 4830 
7 ni (n2) + 3 = 4764 
8 m (n2) + 1 = 4762 

>9 0 
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TABLE 2 

Double Burst Plus Random Erasure Protection Guarantees 

Max. # Random 
Erasures Per Cube 
(Dropped Packets) 

Max. Erasure 
Burst Size 

(Each) 
0 m (n2) = 4761 

( 1.5 second outages 
at 10 Mbits/sec) 

1 ni (n2 - 1) + 2 = 4694 
2 ni (n2 - 1) + 1 = 4693 
3 ni (2) = 138 
4 m + 4 = 73 
5 ni + 2 = 71 
6 ni =69 
7 2 
8 1 

>9 0 

TABLE 3 

Single Burst Plus Random Erasure Guarantees, 
Given a Single Random Error 

Max. # Random 
Erasures Per Cube 
(Dropped Packets) 

Max. Erasure 
Burst Size 
(Packets) 

0 ni (n2 - 1) + 1 = 4693 
1 ni = 69 
2 3 
3 1 

>4 0 
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TABLE 4 

Double Burst Plus Random Erasure Guarantees, 
Given a Single Random Error 

Max. # Random 
Erasures Per Cube 
(Dropped Packets) 

Max. Erasure 
Burst Size 

(Each) 
0 3 
1 2 
2 1 

> 3 0 

3.3    Benchmark Tests 

An encoder/decoder pair was programmed in C for proof-of-concept and for preliminary benchmark 
testing. This code was not optimized (at the programmer's level) for either speed or storage 
requirements. Several timing tests were run on the implementation. The following decoding times 
were measured across the core decoding procedure only (after loading received data into RAM and 
before writing out to file). The times do not account for receiving the data and transferring to 
RAM. Further, we saw a significant reduction in decoding time when the decoder was run twice in 
succession. We attribute this to caching of the program (not the data). 

The data set had the following dimensions: 397 x 69 x 69 x 25 encoded bytes, corresponding 
to 397 x 67 x 67 x 23 bytes of real data. A packet size of 400 bytes was chosen, where 3 bytes 
are used as packet sequence numbers (hence the dimension size 397 above). The second-run times 
are recorded here (real time), as well as the corresponding rate of information data (not codeword 
data) processed: 

Sun Sparc 10 (unloaded):    144.0 seconds (±1)     2.3 Mbits/sec 
Sun Ultra 1 (unloaded):        27.2 seconds (±1)     12.1 Mbits/sec 

We ran the decoding tests on perfect data sets (no erasures, no errors). We do not predict a 
significant increase in decoding time when faced with a significant quantity of erasures; filling in 
erasures once the syndromes have been computed requires little additional computational effort. 
In the interest of time, we opted to implement the full decoding procedure described in Section 2.3 
regardless of the erasure pattern. 

As discussed in Section 2.3, the scheme was designed to allow fast decoding when the channel 
is behaving well. For example, decoding only the first dimension will generally correct low-weight, 
non-bursty erasure patterns. See Section 2.3 for further discussion. The data rate numbers recorded 
above do not reflect an intelligent (adaptive) decoder implementation. 
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4.   IMPLEMENTATION ISSUES 

4.1    A Few Words on Interleaving 

At first glance (and intuitively), it appears that interleaving the data over the channel would 
improve the burst erasure protection for our sub-optimal decoding scheme. However, interleaving 
within a 4-d data set yields no gain. To focus on the issue, we restrict our attention to a single 
burst of erasures without any additional packet erasures or errors. 

We decode the data set by first decoding the Dl codewords, then the D2 codewords, and 
finally the D3 codewords. A non-interleaved approach transmits the packets in this same order 
— we send the packets which comprise the parallel Dl codewords, increment D2sn, send the 
packets which comprise the next set of parallel Dl codewords, increment again, and continue (see 
Figure 3). Consider encoding the message in the same order but sending the data across the 
channel by reordering the dimensions. Specifically, send a packet, increment D3sn by 1, send the 
next, increment D3sn by 1 again and continue until we reach the end of the D3 dimension. Then 
increment D2sn by 1, reset D3sn, and continue. At the receiver, put the data back into the proper 
order (deinterleave) and proceed with the decoding as before. This effectively sends the data across 
the channel in the opposite dimensional order as the decoding. 

Now consider these two scenarios when faced with a long burst erasure. Roughly speaking, the 
non-interleaved scheme leaves the burst erasure recovery solely to the final decoding dimension — 
recovery from 2 erasures in the D3 codewords. Since we transmit the packets in a non-interleaved 
order, we can recover approximately 2 entire 3-d sets (D0,D1,D2) of data, and the final decoding 
loop (dimension D3) does all of the work. This yields an approximate burst erasure protection 
of 2 x LEN1 x LEN2 packets. Similarly, the interleaved scheme leaves the burst erasure recovery 
solely to the first decoding dimension — recovery from 2 erasures in the Dl codewords. Since we 
transmit the packets in the interleaved order, we can recover approximately 2 rows (D2) from each 
of the 3-d sets of data, and the first decoding loop (dimension Dl) does all of the work. This yields 
an approximate burst erasure protection of 2 x LEN2 x LEN3 packets. If we simply swap the sizes 
of the dimensions, keeping the size of the 4-d data set constant, the two schemes are approximately 
equivalent in terms of burst erasure protection. 

This fact seems surprising, but as mentioned above, we can explain it. We rely on a single 
decoding dimension for the main erasure recovery in the case of a long burst erasure. We just change 
the workhorse dimension when we interleave in this way. To increase burst erasure protection, we 
could opt to interleave several 4-d data sets over the channel. However, there are many important 
issues associated with this. Specifically, we would like to interleave 4-d data sets destined for 
different receivers so that a single receiver does not need to store multiple data sets concurrently 
(this would increase the memory requirement on the receiver). This effectively reduces the data 
rate to each receiver while maintaining the same throughput across the channel. Thus, channel 
outages of a fixed time duration correspond to reduced data loss per user. Such a scheme requires 
control over the messages generated from different sources and destined for different receivers, which 
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is outside the scope of application-level forward error correction. Alternately, to avoid requiring 
access to global data, we could opt to interleave 4-d data sets destined for a single receiver and thus 
reduce the erasure burst length per data set. Such a scheme is possible when a single source has 
multiple messages for a single receiver or, more likely, a single long message that must be segmented 
into multiple 4-d data sets (such as a large image file). As mentioned above, however, this would 
significantly increase the memory requirement at the receiver. 

4.2    Multiplication and Division in a Galois Field 

For the encoding and decoding procedure, we need to perform arithmetic operations in a finite 
(Galois) field. We use the Galois Field of 256 elements. In this field (and in any GF of characteristic 
2) addition may be efficiently implemented by a bitwise XOR of their m-tuple representations. 

The primitive polynomial we use to derive field multiplication in GF(256) comes from Peterson 
and Weldon [2, App Cj. We use p(x) = x8 + x7 + x6 + x + 1. The 256 field elements are uniquely 
represented as the polynomials of degree 7 with binary coefficients (elsewhere called the m-tuple 
representation). Field multiplication is then equivalent to polynomial multiplication modulo p{x). 

An equivalent representation of field elements is as a power of a primitive element a, where 
a is a root of the primitive polynomial p(x). The 255 non-zero polynomials of degree 7 with 
binary coefficients are precisely the first 255 powers of a (a0 = 1 to a254) reduced modulo p{x). 
Field multiplication using the powers-of-a representation corresponds to modulo-255 addition of the 
exponents — al + a? = a^+fi™0*255. jn the interest of time, we first implemented multiplication this 
way by using lookup tables to convert between the polynomial representation and the powers-of-a 
representation. However, it is clear that using a 2-key lookup table generated during initialization 
(whose entry is the multiplication of the 2 keys in m-tuple representation) yields a significant time 
improvement, so we added a quick patch in the C code to replace multiplication methods. The 
former method may be implemented using two conversion tables (size on the order of the field size 
256) and a single mod-255 addition for each field multiplication. The latter method requires a single 
table lookup (size on the order of the field size squared). Both methods would generate their tables 
during initialization. Using the 2-key lookup table is faster due to the single table lookup, and we 
suggest exploiting this method since approximately \ of the core computation is multiplication (for 
computing the syndromes). Division is implemented similarly, though used only when correcting 
codewords with 2 erasures; it requires another table of equal size to implement as a 2-key lookup 
table. 

4.3    Choosing the Dimension Sizes 

Note that the implementation choice no = 400 is rather arbitrary. This 400-byte UDP packet size 
includes 3 bytes for sequence numbers. Also, the fixed per-packet network overhead is approximately 
85 bytes (8 byte UDP header including optional checksum, 20 byte IP header, approximate 12 
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bytes for ATM AAL-5 layer [depends on multiplexing MPEG streams], and 5\*$] bytes for the 
48-byte ATM cell headers). This represents approximately 17.5% network overhead. Note that this 
overhead would be incurred by any error control scheme using a 400-byte packet and thus has not 
been a focal point in the design or discussion. 

There are two other factors to consider in setting the packet size no- First, the length does 
not affect the power of the product code in terms of dropped packets, but it clearly affects the 
performance in terms of channel time. For the same channel outage time, decreasing no obviously 
increases the number of packets dropped. Second, varying no does not greatly affect the per-byte 
decoding speed since the product code is implemented in parallel over the packet bytes. 

Next consider the product code dimensions. Note that all burst performance guarantees can 
be stated in terms of the dimension sizes (see Section 3.2) ni,n2. In general, fixing the product 
nin2 = N results in a fixed deterministic burst erasure guarantee. All other things being equal, we 
could opt to maximize the net code rate by choosing n\ = n2 = y/N. Using the Lagrange multiplier 
method for real-valued ni,n2, denote the Lagrangian by J and the multiplier by A. Then 

J   = 

1-—) (l-—)+X(N-nin2) 

S= (i-£)GI)"An2' 
dn2 V       "1/ \nV       Wl" 

Setting both partials to zero and equating, 

1 ) ( — )    =   Anin2 nij \n2 

V      "2/ \nx 

Solving simultaneously for positive ni,n2, we find ni = n2 is the only possible solution, which 
is clearly a maximum. Note that a maximum is guaranteed to exist since we are maximizing a 
continuous function over a compact space. The extension to integral values is intuitive. 

Note that, though the burst erasure performance does not depend on n3, the net code rate does. 
The net rate of the code, disregarding network overhead, is H = (Tta=l\ fsj~l\ (m=l\ {m=2\ 

(recall we use 3 bytes for sequence numbers in every packet). We do not want to make n3 too small. 
On the other hand, the computer memory requirement is directly proportional to n3. 

Finally note that, barring changing the code dimensions on a per-message basis (see below), the 
code dimension choices further affect the net code rate when addressing the finite size of messages. 
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Recall that every message necessarily must be padded to fit into an integral number of 4-d data sets. 
This effect is impossible to quantify without a reasonable traffic profile (a probabilistic distribution 
on message size). 

4.4 File Size versus Code Format 

There is nothing inherent to the logistics of the scheme requiring a fixed set of code dimensions for 
every message. Thus, theoretically, we are free to vary the dimensions of the 4-d data set to fit the 
finite message size with minimal padding (and thus reduce additional coding overhead). 

There is nothing inherent to the implementation, either, which would prohibit varying the code 
dimensions. We could simply pass in the appropriate dimension sizes to the decoder. Note that 
our implementation of the decoder must allocate space at compile time (since multi-dimensional 
arrays are used and the code is implemented in C) and thus must take the maximum amount of 
memory regardless. 

There are several effects to consider when addressing dynamically varying code dimensions. 
First, we cannot vary the packet size no without affecting the performance of the queue manager. 
The queue manager will be designed with a fixed unit of work in mind — e.g., the UDP packet 
size. However, this does not mean that queue manager performance will suffer; however, we may 
sacrifice predictability. Second, varying no allows the finest-grain 4-d data size adjustment (with 
the smallest effect on net code rate per unit change of the four dimensions, as long as we ignore 
network overhead). Note that when adjusting the code dimensions, we should consider the per- 
packet network overhead rather than just the net code rate TZ as defined above. Third, if we allow 
dynamically varying dimensions, we must transmit the dimension parameters along with the data. 
Recall that burst erasures may wipe out a large number of packets, so sending this information 
in a "setup" packet or in the first few packets is unacceptable — the parameters may have to 
be transmitted with every packet, corresponding to additional coding overhead (like the packet 
sequence numbers). 

The padding overhead reduced by allowing dimension variability is, once again, impossible 
to quantify without a probabilistic distribution on the traffic size. Since traffic is completely 
uncharacterized at the moment, no attempt at quantification has been made. 

4.5 Availability of Data 

We have entirely skirted the implementation issue of data availability. We include 3 bytes per 
packet denoting the packet position in the 4-d data set, (Dlsn,D2sn,D3sn). This requires 3 bytes 
of overhead per packet, but it allows us to assemble the data in order at the receiver. When im- 
plementing the preliminary (benchmarking) procedure, we assume that all information has arrived 
at the decoder and processing can begin. We start with an entire simulated data set (with missing 
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or dirty packets, as appropriate) and place this "received data" in order in RAM and proceed with 
the full decoding procedure outlined above. 

On the other hand, this scheme was designed to allow efficient incremental decoding. This 
means that all computation based on an arriving packet can proceed when the packet arrives and 
that no further data is necessary before the computation on the packet can be completed. In an 
actual implementation, we envision an interrupt-driven decoding procedure (a per-packet interrupt 
would be excessively slow if data were arriving with any significant regularity, while only a single 
interrupt may be necessary if data were arriving at, say, 10 Mbits/sec). 

There is an open implementation issue to consider — when should we give up waiting for data 
to arrive? Specifically, our implementation assumes we've already given up waiting for any further 
packets to arrive (we consider them erased). However, the absence of an expected packet (at a 
certain time) may correspond to a channel outage, a network checksum failure, network buffer 
overflow, a queue manager decision to service another user, sudden heavy traffic network delays 
(on a terrestrial network), etc. The first three result in a dropped packet, while the last two simply 
delay its arrival. Consider the latter case, wherein a packet is delayed somewhere in the network. 
Deciding to give up on an expected packet may make the difference between a successfully and an 
unsuccessfully decoded message (obviously). However, it may also make the difference between low 
and high decoding latency (when the decoder could recover the delayed packet by considering it 
"erased"). 

We also realize that packets may arrive out of sequence. Though we believe this should not hap- 
pen in the network architecture we currently envision, it may be possible. Consider an application 
sending packets over multiple physical links in a terrestrial network. There is no guarantee that 
all packets will arrive at the queue manager (or from the satellite link receiver to the application) 
in sequence. In the current C code implementation, we effectively assume that all packets arrive 
in sequence. Jumping forward in the sequence is no problem in that we can simply assume all 
intermediate packets have been erased (and thus we do our best to fill in the intermediate packets). 
However, jumping back in the sequence of packet arrivals is impossible in the current implementa- 
tion. We process syndromes for Dl (fixing D2sn and D3sn), correct the Dl codeword if possible, 
and then overwrite the Dl syndrome table with the next Dl codeword (for D2sn + 1 and D3sn). 
Similarly, we process syndromes for D2 (fixing D3sn), correct the D2 codewords if possible, and 
then overwrite the D2 syndrome table (for D3sn +1). Though memory efficient, we cannot do this 
if we allow packets to arrive out of sequence. 
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5.   SUMMARY 

We have outlined a high-rate forward error control scheme designed to recover from a variety of 
network and channel behaviors which result in a significant loss of data. The scheme is designed 
for the protection of large messages destined for a receiver running an application-level message 
decoding procedure. The error control scheme has been designed for flexibility according to receiver 
computational and memory limitations as well as adaptability to channel behavior. 

The packet loss patterns which will cause the proposed sub-optimal decoding procedure to 
fail have been fully characterized, and these patterns have been compared to those which would 
cause an optimal decoding procedure to fail. The deterministic burst packet loss protection in the 
presence of scattered packet erasures and packet errors has been characterized in a number of ways. 
A stochastic analysis has not been attempted because no reasonable stochastic channel model is 
available for the types of error events considered. 

An encoding and decoding procedure was implemented in C for preliminary benchmark testing. 
We find that the full core decoding procedure can process incoming data on a Sun Sparc 10 and a 
Sun Ultra 1 with a reasonable throughput at the application level. 

Several minor implementation issues have been highlighted which still need to be addressed if 
this proposed scheme is to be implemented operationally. 
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